
Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for
Modeling and Rendering Scattering and Emissive Media
JORGE CONDOR,Meta Reality Labs, Switzerland and USI Lugano, Switzerland
SÉBASTIEN SPEIERER,Meta Reality Labs, Switzerland
LUKAS BODE,Meta Reality Labs, Switzerland
ALJAŽ BOŽIČ,Meta Reality Labs, Switzerland
SIMON GREEN,Meta Reality Labs, United Kingdom
PIOTR DIDYK, USI Lugano, Switzerland
ADRIÁN JARABO,Meta Reality Labs, Spain

ACM Reference Format:
Jorge Condor, Sébastien Speierer, Lukas Bode, Aljaž Božič, Simon Green,
Piotr Didyk, andAdrián Jarabo. 2024. SupplementalMaterial Don’t Splat your
Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering
Scattering and Emissive Media. ACM Trans. Graph. 0, 0, Article 0 (2024),
11 pages. https://doi.org/0.0

This supplemental document includes additional details on the
derivations of our volumetric model, as well as its adjoint deriva-
tives for inverse rendering. I also includes additional details on the
optimization process for radiance fields, and additional results on
both synthetic and captured datasets.

S.1 VOLUMETRIC PRIMITIVES
Inspired by recent works using Gaussian primitives for reconstruct-
ing radiance fields [Kerbl et al. 2023], and following a similarmedium
definition as Knoll et al. [2021], we model media using sets of primi-
tives. Each primitive P𝑖 represents a statistical aggregate of matter
with identical emission, cross section and phase function, and with
density 𝜌𝑖 (x) defined by a three-dimensional un-normalized kernel
𝐾𝑖 (x). Given these primitives, we can model the distribution of mat-
ter, and therefore the extinction probability as a mixture of these
volumetric primitives following

𝜇𝑡 (x) =
𝑁∑︁
𝑖=1

𝜎𝑖 𝐾𝑖 (x), (S.1)

with 𝑁 the number of primitives affecting x, and 𝜎𝑖 its cross-section.
For kernels with infinite support, 𝑁 is the total number of primitives
𝑁total = 𝑁 . In our case, we assume that all kernels have limited

Authors’ addresses: Jorge Condor, jorge.condor@usi.ch, Meta Reality Labs, Giesshübel-
strasse 30, Zurich, Zurich, Switzerland, 8045 and USI Lugano, Via Giuseppe Buffi 13,
Lugano, Ticino, Switzerland, 6900; Sébastien Speierer, speierers@meta.com, Meta Real-
ity Labs, Giesshübelstrasse 30, Zurich, Switzerland, 8045; Lukas Bode, lbode@meta.com,
Meta Reality Labs, Giesshübelstrasse 30, Zurich, Switzerland, 8045; Aljaž Božič,
aljaz@meta.com, Meta Reality Labs, Giesshübelstrasse 30, Zurich, Switzerland, 8045;
Simon Green, simongreen@meta.com, Meta Reality Labs, London, United Kingdom,
8045; Piotr Didyk, piotr.didyk@usi.ch, USI Lugano, Via Giuseppe Buffi 13, Lugano,
Switzerland, 6900; Adrián Jarabo, ajarabo@meta.com, Meta Reality Labs, , Zaragoza,
Spain.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution.

t
1,0

t
1,1

t
2,0

t
3,0

t
2,1

t
3,1

t
1,0

t
1,1

t
2,0

t
3,0

t
2,1

t
3,1

Fig. S.1. Top: Flatland representation of a mediummodeled using𝑁total = 5
primitives P𝑖 with 𝑖 ∈ [1, 5]. For the depicted ray from the camera only
three primitives contribute directly to the ray. Bottom: The primitives are
projected in 1D along the ray, and their density, emission and in-scattering
are integrated over that line, which can be separated in disjoint segments
defined by the boundaries of the primitives. The contribution of each seg-
ment S𝑘 is the integral over the primitives overlapping on that segment.

support, so typically 𝑁 < 𝑁total. The remaining optical properties
are computed analogously.

S.1.1 The RTE with volumetric primitives
By plugging Equation (S.1) into the volumetric rendering equation,
and omitting the boundary condition at x𝑠 for simplicity, we get

𝐿(x0, 𝜔) =
∫ 𝑠

0
T(x, x𝑡)

𝑁∑︁
𝑖=1

𝜎𝑖𝐾𝑖 (x𝑡) 𝐿𝑜,𝑖 (x𝑡 , 𝜔) d𝑡

=

𝑁∑︁
𝑖=0

𝜎𝑖

∫ 𝑡𝑖,1

𝑡𝑖,0
T(x, x𝑡)𝐾𝑖 (x𝑡) 𝐿𝑜,𝑖 (x𝑡 , 𝜔) d𝑡, (S.2)

with 𝑡𝑖,0 ≥ 0 and 𝑡𝑖,1 ≤ 𝑡 the boundaries of the segment defined by x𝑡
when intersecting the footprint of the primitive P𝑖 (see Figure S.1),
and 𝐿𝑜,𝑖 (x, 𝜔) the outgoing radiance from primitive P𝑖 , defined as

𝐿𝑜,𝑖 (x𝑡 , 𝜔) = (1 − 𝛼𝑖)𝑄𝑖 (𝜔) +𝛼𝑖
∫
S2
𝑓𝑡𝑒𝑥𝑡𝑝,𝑖 (𝜔 ′ → 𝜔)𝐿(x, 𝜔′) d𝜔 ′,

(S.3)

HTTPS://ORCID.ORG/0000-0002-9958-0118
HTTPS://ORCID.ORG/0000-0001-6919-7567
HTTPS://ORCID.ORG/0000-0002-8710-8561
HTTPS://ORCID.ORG/0009-0002-2985-6921
HTTPS://ORCID.ORG/0009-0006-5323-1170
HTTPS://ORCID.ORG/0000-0003-0768-8939
HTTPS://ORCID.ORG/0000-0001-9000-0466
https://doi.org/0.0
https://orcid.org/0000-0002-9958-0118
https://orcid.org/0000-0001-6919-7567
https://orcid.org/0000-0002-8710-8561
https://orcid.org/0009-0002-2985-6921
https://orcid.org/0009-0006-5323-1170
https://orcid.org/0000-0003-0768-8939
https://orcid.org/0000-0001-9000-0466

0:2 • Condor et al.

where 𝛼𝑖 , 𝑄𝑖 (𝜔) and 𝑓𝑡𝑒𝑥𝑡𝑝,𝑖 (𝜔 ′ → 𝜔) are the single scattering
albedo, emission, and phase function of primitive P𝑖 , respectively.
Note that they have no spatial dependency.
With the formulation of extinction in Equation (S.1), we can

now express transmittance as the product of the transmittance of
individual volumetric primitives, or as the sum of the optical depths
of contributing kernels to the given segment:

T(x0, x𝑡) = exp
(
−

∫ 𝑡

0

𝑁∑︁
𝑖=1

𝜎𝑖 𝐾𝑖 (x𝑡 ′)d𝑡 ′
)

= exp
(
−

𝑁∑︁
𝑖=1

∫ 𝑡

0
𝜎𝑖 𝐾𝑖 (x𝑡 ′)d𝑡 ′

)
= exp

(
−

𝑁∑︁
𝑖=1

𝜏𝑖 (x, x𝑡)
)

(S.4)

with 𝜏𝑖 (x𝑎, x𝑏) the optical depth from primitive P𝑖 in the range
𝑡 ∈ [𝑎, 𝑏] defined as

𝜏𝑖 (x𝑎, x𝑏) = 𝜎𝑖
∫ min(𝑏, 𝑡𝑖,1)

max(𝑎, 𝑡𝑖,0)
𝐾𝑖 (x𝑡 ′) d𝑡 ′ . (S.5)

Equation (S.4) can be solved with traditional stochastic tracking
methods (e.g., Woodcock tracking [Woodcock 1965]). However, if
we chose the kernel 𝐾 carefully so that the line integral in Equa-
tion (S.5) has a closed-form solution, we can compute the trans-
mittance T(x, x𝑡) analytically. This is similar to regular tracking
methods [Sutton et al. 1999]. Unfortunately, directly solving Equa-
tion (S.2) together with our transmittance estimator (S.4) involves
a nested loop over potentially all 𝑁 primitives intersected by the
ray, leading to a computational complexity of 𝑂 (𝑁 2). In the follow-
ing, we propose an alternative formulation for Equation (S.2) more
suitable for rendering.

S.1.2 Integrating through segments
Given the limited support of the kernels defining our primitives
(or alternatively, our ability to clip kernels with infinite support),
solving Equation (S.2) results into the summation of multiple line-
integrals in potentially overlapping segments along the ray defined
by r(𝑡) = x0 − 𝜔 𝑡 , where each segment is the primitives’ footprint
along the ray. As we show in the simple example in Figure S.1
(bottom), the boundaries of each primitive 𝑡𝑖,0 and 𝑡𝑖,1 subdivide
the ray into segments S𝑘 = [̂𝑡𝑘,0, �̂�𝑘,1]. Each of these segments S𝑘
might overlap with zero, one, or multiple primitives denoted with
the set {P𝑖 |𝑖 ∈ 𝑆𝑘 }, where 𝑆𝑘 is the per-segment set of indices,
with |𝑆𝑘 | ≤ 𝑁 the number of primitives overlapping in segment
S𝑘 . Without loss of generality, let us assume that the segments are
ordered, so that �̂�𝑘,0 = �̂�𝑘−1,1 for 𝑘 > 0, with �̂�0,0 = x.
With that definition, we can rewrite Equation (S.2) as the sum-

mation of the radiance at each segment, following

𝐿(x0, 𝜔) =
𝑀∑︁
𝑘=1

∫ �̂�𝑘,1

�̂�𝑘,0
T(x, x𝑡)

∑︁
𝑖∈𝑆𝑘

𝜎𝑖𝐾𝑖 (x𝑡) 𝐿𝑜,𝑖 (x𝑡 , 𝜔) d𝑡, (S.6)

with𝑀 ≤ 2𝑁 − 1 the number of segments along the ray. Similarly,
leveraging that the segments are ordered along the ray, we can

rewrite Equation S.4 as a recursive operator, defining the transmit-
tance after S𝑘 as

T𝑘 (x0, x𝑡) = T𝑘−1 (x0, x𝑡) exp
©«−

∑︁
𝑖∈𝑆𝑘

𝜏𝑖

(
x�̂�𝑘,0 , xmin(𝑡 ,̂𝑡𝑘,1)

)ª®¬ ,
= T𝑘−1 (x0, x𝑡) T(x�̂�𝑘,0 , x𝑡), (S.7)

with T0 (x0, x𝑡) = 1, 𝜏𝑖 (x𝑎, x𝑏) = 0 for 𝑎 ≥ 𝑏, and T𝑀 (x0, x𝑡) =

T(x0, x𝑡). Plugging Equation (S.7) into (S.6) we thus get

𝐿(x0, 𝜔) =
𝑀∑︁
𝑘=1

T𝑘−1 (x0, x𝑡)𝐿𝑘 (x�̂�𝑘,0 , 𝜔), (S.8)

with 𝐿𝑘 (x�̂�𝑘,0 , 𝜔) the outgoing radiance at the segment S𝑘 defined
as

𝐿𝑘 (x�̂�𝑘,0 , 𝜔) =
∫ �̂�𝑘,1

�̂�𝑘,0
T(x�̂�𝑘,0 , x𝑡)

∑︁
𝑖∈𝑆𝑘

[
𝜎𝑖𝐾𝑖 (x𝑡) 𝐿𝑜,𝑖 (x𝑡 , 𝜔)

]
d𝑡 .

(S.9)
Note that this form of Equation (S.2) actually introduces addi-

tional computational complexity, since in its worst case scenario (all
primitives overlap, leading to a segment with 𝑁 overlapping primi-
tives), the computational cost of Equation (S.8) is 𝑂 (𝑁 3). However,
in realistic scenarios the number of overlapping primitives |𝑆𝑘 | at a
given segment S𝑘 is not high. This approach has benefits for closed-
form integration of the inner integral of the summation in certain
scenarios, as we will show later for emissive media. Note that this
approach is similar to how production renderers deal with complex
overlapping media [Fong et al. 2017, Ch.6]; the key difference is
that our approach approximates the media with primitives, which
allows having closed-form transmittance and sampling expressions.

S.1.3 Sampling transmittance
In order to solve Equation (S.6), specially the in-scattering integral,
we need to sample the distance 𝑡 along the ray. The most common
approach is to sample 𝑡 with probability distribution function (PDF)
𝑝 (𝑡) = 𝜇𝑡 (x𝑡)T(x0, x𝑡), and therefore with cumulative distribution
function (CDF) 𝑃 (𝑡) = T(x0, x𝑡). While this is trivial for homoge-
neous media, for the most general case of heterogeneous media
a tracking null-scattering-based approach is required [Miller et al.
2019; Novák et al. 2018], which requires a careful choice of majorant
to maximize performance [Kutz et al. 2017; Misso et al. 2023].

While our volumetric primitive-based definition of the media al-
lows the use of tracking estimators for distance sampling, we found
that we can leverage the recursive formulation of transmittance (S.7)
and pose the problem as an iterative search problem, where we uni-
formly sample the transmittance with a random variable 𝜉 ∈ (0, 1),
and search for the distance 𝑡 so that 𝜉 (𝑡) = T(x0, x𝑡). This approach
is very similar to regular tracking [Sutton et al. 1999], which we ex-
tend to handle overlapping kernels efficiently. In particular, we first
search for a segment S𝑘 so that (1 − 𝜉) ∈ [T𝑘−1,T𝑘]. Then, we in-
vert the transmittance inside the segment, solving for 𝑡 ∈ [̂𝑡𝑘,0, �̂�𝑘,1]
equation

log(1 − 𝜉) = −
∑︁
𝑖∈𝑆𝑘

𝜏𝑖

(
x�̂�𝑘,0 , x𝑡

)
. (S.10)

Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media • 0:3

Depending on the type of kernel 𝐾𝑖 (x) being used, and the amount
of overlaps in segment S𝑘 this equation may have a closed-form
analytical solution. However, for cases where Equation (S.10) does
not have a simple analytical solution (e.g. many overlapping kernels
at the same segment), we rely on numerical root-finding. Here, we
propose two methods.

Newton-Raphson Solver. Our first choice, given its efficiency, is
the Newton-Raphson iterative method [Brown and Martin 2003]. In
particular, we iteratively find the distance 𝑡 by solving

𝑡 𝑗+1 = 𝑡 𝑗 −

∑
𝑖∈𝑆𝑘 𝜏𝑖

(
x�̂�𝑘,0 , xmin(𝑡 𝑗 ,̂𝑡𝑘,1)

)∑
𝑖∈𝑆𝑘 𝜎𝑖 𝐾𝑖 (x𝑡 𝑗)

, (S.11)

with 𝑗 the iterator, and 𝑡𝑟 and 𝑡𝑟+1 the current and next solution. As
long as extinction is positive, the Newton-Raphson solver is guar-
anteed to converge [Brown and Martin 2003]. We found that we
can achieve good precision with just a few iterations (1-3), given
that our initial estimates of the sampled distance are usually quite
close to the final solution already (we use half the segment length as
initial estimate, and clip the distance to the segment bounds during
the iteration). The Newton-Raphson solver works particularly well
on kernels with limited support and/or short tails (i.e. Epanechnikov,
bicubic, triangular...). However, long-tailed kernels, or those with in-
finite support (i.e. Gaussian) will occasionally suffer from numerical
instability when attempting to sample segments on the very edge of
the primitive shells. In practice, this translates into a small amount
of rendering artifacts, as the sampled distance will clip to one of the
segment limits. To overcome this, at a small performance cost, we
suggest using the slower, but more stable, bisection method.

Bisection Solver. Given a fixed segment where we know the root
will be present (integration segment limits 𝑡𝑎 and 𝑡𝑏), we first com-
pute its midpoint as 𝑡𝑐 = 𝑡𝑎+𝑡𝑏

2 . Then, we re-compute accumulated
optical depth up to the midpoint

∑
𝑖∈𝑆𝑘 𝜏𝑖

(
x�̂�𝑘,𝑎 , x�̂�𝑘,𝑐

)
. If the pre-

dicted optical depth falls within a margin of − log(1 − 𝜉), the recur-
sion ends. Otherwise, depending on whether the difference between
them is positive or negative (either the proposed distance under or
overshoots the target), we will update either 𝑡𝑎 or 𝑡𝑏 with 𝑡𝑐 , and
start the process again. While fairly simple, due to the normally
short segment length no more than 4-8 iterations are usually needed
to obtain reasonable estimates. Even when analytical solutions to
the inverse sampling problem exist, due to the numerical inaccuracy
or expensive cost of some inverse analytical functions, we can still
revert to the solvers even on segments with a single primitive.

S.1.4 Emissive media
So far, we have dealt with the emission 𝑄 (x, 𝜔) and in-scattering
𝑆 (x, 𝜔) in a unified fashion inside 𝐿𝑜 (x𝑡 , 𝜔). However, these two
terms are generally not correlated (emissive media is generally
non-scattering, and vice-versa) and the behaviour of both terms is
different. Thus, a common approach is to compute these two terms
as separate integrals.

In the case of emissive media, we can assume a medium with no
scattering (i.e., with 𝛼 = 0), and where all contribution is due to
the source term 𝑄 (x, 𝜔). In that case, leveraging our assumption

of constant reduced emission 𝑄𝑖 (𝜔) = (1 − 𝛼𝑖)𝑄𝑖 (𝜔) in primitive
P𝑖 and expanding the transmittance term T(x�̂�𝑘,0 , x𝑡), we transform
Equation (S.9) as

𝐿𝑘 (x�̂�𝑘,0 , 𝜔) =
∫ �̂�𝑘,1

�̂�𝑘,0
𝑒

∫ x𝑡
�̂�𝑘,0

∑
𝑖∈𝑆𝑘 𝜎𝑖𝐾𝑖 (x𝑡)d𝑡 ′ ∑︁

𝑖∈𝑆𝑘

[
𝜎𝑖𝐾𝑖 (x𝑡) (S.12)

𝑄𝑖 (𝜔)
]
d𝑡 .

For a single primitive inside the segment, this integral has closed
form depending on the kernel. However, for multiple overlapping
primitives it does not, and we need to compute Equation (S.12)
numerically. For our radiance field reconstruction application, we
approximate (S.12) using a simpler light transport model.

Discussion. We have derived a general framework for radiative
transport in primitive-based media, defined using arbitrary kernel
functions. Any kernel could be used within our framework as long
as 1) they have limited support or their decay is such that they can
be bounded or clipped efficiently and 2) closed-form solutions to
their line integrals exist or can be numerically computed efficiently.

S.2 ADJOINT DERIVATIONS
Here we include the full derivation of the adjoints for both the VPPT
and VPRF integrators. For simplicity, in the following formulas we
omit the set 𝑃 of kernel primitives for all summations and products.

S.2.1 Adjoint VPRF
The image formation model of this integrator iterates over all seg-
ments along the ray, gathering the kernel primitives contributing
to each segment 𝑃 and compute the emission as follows:

𝐿𝑒 =
∑︁
𝑖

©«𝐸𝑖 · (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖∑
𝑗 𝜏 𝑗

ª®¬ .
With 𝐸𝑖 the emission of the primitive 𝑖 in the segment and 𝜏𝑖 the

integrated density of the primitive 𝑖 for that segment. In the adjoint
formulation of this integrator, we are interested in the derivative
𝛿𝐿𝑒 , defined as

𝛿𝐿𝑒 = 𝛿
∑︁
𝑖

©«𝐸𝑖 · (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖∑
𝑗 𝜏 𝑗

ª®¬
=

∑︁
𝑖

𝛿
©«𝐸𝑖 · (1 −

∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖∑
𝑗 𝜏 𝑗

ª®¬ .
Now using the product rule, we can explode the within the loop

and differentiate each term individually:

0:4 • Condor et al.

𝛿
©«𝐸𝑖 · (1 −

∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖∑
𝑗 𝜏 𝑗

ª®¬ =

𝛿 (𝐸𝑖) · (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖 ·
1∑
𝑗 𝜏 𝑗

(a)

+ 𝐸𝑖 · 𝛿 (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖 ·
1∑
𝑗 𝜏 𝑗

(b)

+ 𝐸𝑖 · (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝛿 (𝜏𝑖) ·
1∑
𝑗 𝜏 𝑗

(c)

+ 𝐸𝑖 · (1 −
∏
𝑗

𝑒−𝜏 𝑗) · 𝜏𝑖 · 𝛿 (
1∑
𝑗 𝜏 𝑗

) (d)

Terms (a) and (c) don’t need any special handling to be differenti-
ated. For (b) we apply the product rule:

𝛿 (1 −
∏
𝑗

𝑒−𝜏 𝑗) = −𝛿 (
∏
𝑗

𝑒−𝜏 𝑗) =
∑︁
𝑗

−𝛿 (𝑒−𝜏 𝑗)
∏
𝑘 𝑒

−𝜏𝑘

𝑒−𝜏 𝑗

For the term (d), we can use the chain rule as follow:

𝛿 (1∑
𝑗 𝜏 𝑗

) = −1
(∑𝑗 𝜏 𝑗)2

· 𝛿 (
∑︁
𝑗

𝜏 𝑗) =
∑︁
𝑗

−𝛿 (𝜏 𝑗) ·
1

(∑𝑘 𝜏𝑘)2
The segment emission 𝐿𝑒 is also multiplied by the path through-

put 𝛽 , which accumulate transmittance along the ray as follow:

𝐿 = 𝛽 · 𝐿𝑒 =
∏
𝑠

𝑇𝑠 · 𝐿𝑒

with
∏
𝑠 𝑇𝑠 the path throughput as the product of the transmit-

tance of the previously visited segments. To compute the derivatives
we can again apply the chain rule:

𝛿𝐿 = 𝛿 (
∏
𝑠

𝑇𝑠) · 𝐿𝑒 +
∏
𝑠

𝑇𝑠 · 𝛿 (𝐿𝑒)

=
∑︁
𝑗

𝛿 (𝑇𝑗)
∏
𝑘 𝑇𝑘

𝑇𝑗
· 𝐿𝑒 +

∏
𝑠

𝑇𝑠 · 𝛿 (𝐿𝑒)

With the formulations above, we can implement the adjoint of
this image formation model as presented in Listing S.1.

1 def primitive_tracing(ray, max_depth, P = []):

2 depth = 0

3 𝑡0 = 0.0 # Current segment start time

4 while depth < max_depth:

5 V = [(p, p.𝑡1) for p in P] # List primitive exit points

6 p = ray_intersect(ray) # Find next primitive

7 V.append((p, p.𝑡0)) # Add primitive entry point

8

9 # Process all exit points up to this intersection

10 while not V.is_empty():

11 # Find next vertex to process

12 v = min(V, key=lambda x: x.𝑡)

13

14 # Process segment according to application

15 process_segment(ray, G, 𝑡0, v.𝑡)

16

17 𝑡0 = v.𝑡 # Move on to next segment

18 if p == v.p: break # Check if we have reached p

19 P.remove(v.p) # Exiting v.p

20 V.remove(v)

21

22 P.append(p) # Ray is now entering primitive p

23 ray = ray.move_to(p.𝑡0) # Update ray position

24 depth += 1

Listing S.1. Pseudo-code implementation of the adjoint logic for VPRF.

S.2.2 Adjoint VPPT
In this integrator, a scattering event 𝑆 is always associated to a set of
kernel primitives contributing to the density in that point in space.
As commonly used in the RTE, we are required to compute the
single scattering albedo 𝐴𝑆 of this scattering event, which will be
multiplied with the path throughput 𝛽 , the transmittance 𝑇𝑆 and
the density of the scattering event 𝜇𝑆 , to finally weight any further
incoming radiance 𝐿𝑖 .

This can be summarized in the following equation:

𝐿 = 𝛽 · 𝐴𝑆 ·𝑇𝑆 · 𝜇𝑆 · 𝐿𝑖
and the corresponding derivatives:

𝛿𝐿 = 𝛿 (𝛽 · 𝐴𝑆 ·𝑇𝑆 · 𝜇𝑆 · 𝐿𝑖)
= 𝛿 (𝛽) · 𝐴𝑆 ·𝑇𝑆 · 𝜇𝑆 · 𝐿𝑖
+ 𝛽 · 𝛿 (𝐴𝑆) ·𝑇𝑆 · 𝜇𝑆 · 𝐿𝑖
+ 𝛽 · 𝐴𝑆 · 𝛿 (𝑇𝑆) · 𝜇𝑆 · 𝐿𝑖
+ 𝛽 · 𝐴𝑆 ·𝑇𝑆 · 𝛿 (𝜇𝑆) · 𝐿𝑖
+ 𝛽 · 𝐴𝑆 ·𝑇𝑆 · 𝜇𝑆 · 𝛿 (𝐿𝑖)

Computing 𝛿𝐴𝑆 . When given a set of kernel primitives contribut-
ing to the density at a scattering event, we compute the sum of their
respective albedo values 𝑎𝑖 , weighted by their being their PDF value
𝑝𝑖 at the scattering location. This can be written as follow:

𝐴𝑆 =
∑︁
𝑖

𝑎𝑖𝑝𝑖 ·
1∑
𝑖 𝑝𝑖

Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media • 0:5

(c) primal

(a) center (b) rotation

fi
ni
te
 d
iff
er
en
ce
s

ou
rs

Fig. S.2. Validation of the gradients computed by VPPT, compared with
finite differences, on a couple of overlapping Gaussian kernels with an
isotropic scattering function. Primal image can be visualized on the right.

In order to compute the derivative of this term, we can apply the
product and chain rules to put the derivative terms under a single
sum, translating to a single loop in the adjoint implementation:

𝛿𝐴𝑆 = 𝛿

(∑︁
𝑖

𝑎𝑖𝑝𝑖 ·
1∑
𝑖 𝑝𝑖

)
= 𝛿 (

∑︁
𝑖

𝑎𝑖𝑝𝑖) ·
1∑
𝑖 𝑝𝑖

+ 𝛿 (1∑
𝑖 𝑝𝑖

) ·
∑︁
𝑖

𝑎𝑖𝑝𝑖

=
∑︁
𝑖

𝛿 (𝑎𝑖𝑝𝑖) ·
1∑
𝑖 𝑝𝑖

− 1
(∑𝑖 𝑝𝑖)2 · 𝛿 (

∑︁
𝑖

𝑝𝑖) ·
∑︁
𝑖

𝑎𝑖𝑝𝑖

=
∑︁
𝑖

©«𝛿 (𝑎𝑖𝑝𝑖) · 1∑
𝑗 𝑝 𝑗

− 𝛿 (𝑝𝑖) ·
1

(∑𝑗 𝑝 𝑗)2
·
∑︁
𝑗

𝑎 𝑗𝑝 𝑗
ª®¬

Computing 𝛿 (𝑇𝑆). The transmittance of a path segment is given
by the product of the transmittance of the kernel primitive along
that segment as shown here, with 𝜏𝑖 the optical depth of each kernel:

𝑇𝑆 =
∏
𝑖

𝑒𝜏𝑖

To transform this chain of products into a sum, we simply apply
the product rule once again:

𝛿𝑇𝑆 = 𝛿 (
∏
𝑖

𝑒𝜏𝑖) =
∑︁
𝑖

𝛿 (𝑒𝜏𝑖) ·
(∏𝑗 𝑒

𝜏 𝑗)
𝑒𝜏𝑖

Computing 𝛿𝜇𝑆 . This one is simple since it is already defined as a
sum:

𝛿𝜇𝑆 =
∑︁
𝑖

𝛿𝜇𝑖

We validate the accuracy of the computed gradients using our
adjoint derivation in Figure S.2, by comparing it to finite differences.

S.3 MIXTURE MODEL REGRESSION
Depending on asset complexity, we present two different pipelines
to regress our mixture models. In the case of relatively simple as-
sets, we can leverage the accuracy of our analytic transmittance
gradient computation to setup an image-based tomographic recon-
struction. However, akin to previous primitive-based volumetric
representations (i.e., 3DGS), starting from a random set of primi-
tives and optimizing end-to-end can result in degraded regression
quality when the complexity of the reference asset is high. In order
to improve the pipeline, we include two additional pre-processing
steps based on traditional mixture model regression literature to
provide a better starting point to our tomographic reconstruction
pipeline.

Randomly initialized reconstruction. We first render a set of tomo-
graphic images of our asset as training data. We start on a single
primitive, and progressively adds new primitives throughout the
optimization via random splitting of the optimized set every few iter-
ations. Similarly to 3DGS, we alternate this procedure with pruning
steps to eliminate small or very shallow primitives. As optimiza-
tion loss, we use a combination of L1, D-SSIM and an anisotropy
regularization. Full details of this pipeline are presented in Section
7.2, which we use in that case for the substantially more complex
inverse scattering optimization. We use this approach to regress
the Smoke asset; in Figure 8, we compare between the original grid-
based asset and our reconstructed GMM, showcasing the quality and
compactness of our representation. Additionally, since our approach
is image-based, it can potentially be used in other tomographic ap-
plications, where explicit density representations (voxelgrids) are
not available.

EM-initialized reconstruction. We first use the Expectation - Maxi-
mization algorithm [Moon 1996] to obtain a dense GMM representa-
tion of the discrete voxel-grid based distribution we want to model
(40k Gaussians from 10M sampling points). While the quality of the
regressed asset is very high, it normally produces high amounts
of large overlapping kernels, which hampers the efficiency of our
rendering approach. To reduce the complexity in a principled way,
we perform an aggregation step following hierarchical clustering
using the Kullback–Leibler divergence as a measure of similarity,
similar to Jakob et al. [Jakob et al. 2011]. The amount of aggregation
can vary depending on the desired complexity of the mixture. Fi-
nally, we employ the tomographic reconstruction method described
above to further distill our mixture and regularize its anisotropy
to enhance performance. We use this procedure for both the Cloud
and Dust Explosion assets.

S.4 OPTIMIZATION AND RENDERING OF RADIANCE
FIELDS - IMPLEMENTATION DETAILS

S.4.1 Initialization
We warm start our optimization on previously trained scenes using
3D Gaussian splatting [Kerbl et al. 2023] (3DGS). Our different image
formation model impedes us from directly rendering their sets of
primitives, but they represent a better, denser initialization for our
method than random initializations or the relatively sparse SfM
point sets.

0:6 • Condor et al.

Parameter Initial LR Final LR
Color Emission 0.1 0.01
Means 8e-3 4e-5
Rotations 8e-3 2e-5
Scales 5e-4 1e-5
Opacity 1e-3 3e-5

Table S.1. List of parameters and their initial and final learning rate values.
They are exponentially annealed throughout the optimization until the
3072th iteration.

S.4.2 Optimization Process
Rendering. Each iteration renders rays in batches of 8 full images

for high-resolution, real datasets, and 16 for synthetic ones. Due
to our reliance on D-SSIM loss, we cannot render random rays
from the reference dataset for each batch, which would be more
stable from the optimization point of view. We use 4 levels of SHs to
model the anisotropic color emission, and optimize for a fixed 4096
iterations. As opposed to 3DGS, we use the same parameters in all
our experiments, for both synthetic and real datasets. Fine-tuning
per dataset could substantially improve the presented results.

Optimization overview. We start by solely optimizing for the opac-
ity to improve our 3DGS initialization. This is followed by an emis-
sion optimization-only step, compensating for a slightly different
color function. Both are done for 64 iterations, where we freeze
primitive parameters and optimize the alpha and zeroth level of
the spherical harmonics emission respectively. We then proceed to
optimize for each parameter at different learning rates, using the
previously introduced Bounded Adam optimizer (with learning rates
in Table S.1) and means bounded by the scene scale defined by SfM.
We strictly control learning rate annealing through an exponential
decay function akin to the one in 3DGS. [2023], but use it for all
parameters as opposed to solely for the primitives’ mean. All of our
scenes use the same hyperparameters, settings, and procedure to be
consistent with previous instances.

Primitive pruning and cloning strategies. During the optimization
process, we use different strategies to help avoid underreconstruc-
tion and improve its efficiency. We prune primitives approaching
the density lower bound, as we deem their small contribution to
the scene reduces our performance for little gain in quality. We
heuristically found a value of 𝜎threshold = 1𝑒 − 5 to work well for all
scenes. We prune every 200 iterations until the 3600th. We couple
this with random spawning strategy, where we randomly clone
existing primitive means with a small amount of added random
perturbation. The new primitives have a fixed starting density of
0.6 and scale of 0.02, to avoid potentially new blocking artifacts
substantially impacting the optimization while still helping with
holes. We practically found that cloning 10% of the primitives ev-
ery 100 iterations gives ample time to the optimization to decide
whether the new primitives improve the reconstruction or other-
wise, in which case they will be pruned. We keep cloning until the
2400th iteration. In our experience, this stochastic process of adding
noise (and later denoising through pruning strategies) was more
robust than 3DGS’s gradient-based splitting and cloning, where the

choice of this heuristic threshold is difficult to control. Gradient-
based thresholds heavily depend on the scale of the scene being
modelled; extending to new scenes requires expensive iteration and
testing over different values. Similarly to 3DGS, we initially opti-
mize solely the diffuse (zeroth order) SH color emission, which we
progressively upsample every 300 iterations, resulting in a more
stable training. For the results displayed in Tables S.2, S.3 and S.4 we
run our pipeline for 4096 iterations (plus the 128 of initial opacity
and diffuse color), although, as in 3DGS, longer training times might
produce better results.

S.4.3 Loss Function
Similarly to 3DGS, we use a 𝜆 weighted combination of a mean-
absolute error (L1) loss and D-SSIM [Wang et al. 2004] (S.13).

L = (1 − 𝜆) 1
𝑁

𝑁∑︁
𝑖=0

| (𝑥 − 𝑥𝑖) | + 𝜆(1 − 𝑆𝑆𝐼𝑀 (𝑥, 𝑥𝑖)) . (S.13)

In our experiments, we use 𝜆 = 0.2.

S.4.4 Rendering parameters
In order to strike a good balance between optimization speed and
final mixture quality, we render at 1 sample per ray, but deactivate
typical performance trade-offs like Russian Roulette. We also use
unlimited primitive depths and employ analytic ellipsoidal shells.
Optimizing with some of this parameters on (particularly, the differ-
ent shells) might produce mixtures that are both more efficient and
compensate for some of the artifacts they might generate; however
in order to better compare to previous works, we decided to follow
a safer approach and maximize quality.

S.5 OPTIMIZATION AND RENDERING OF RADIANCE
FIELDS - QUANTITATIVE COMPARISON TO
PREVIOUS WORK

For accurate comparison to previous works, in the results presented
below we deactivate Russian Roulette, uncap the maximum depth,
use 128 spp for rendering and employ analytical ellipsoid shells. This
improves quality (the difference between 1 and 128 spp is usually
around 1.5 dB in PSNR due to better sampling of edges and small
features) at the cost of performance. All images presented, unless
otherwise stated, were generated using 8 spp.

REFERENCES
Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In Proceedings
of CVPR.

Forrest B Brown and William R Martin. 2003. Direct sampling of Monte Carlo flight
paths in media with continuously varying cross-sections. In Proc. ANS Mathematics
& Computation Topical Meeting, Vol. 2.

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production
volume rendering. In ACM SIGGRAPH 2017 Courses.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In
Proceedings of CVPR.

Wenzel Jakob, Christian Regg, and Wojciech Jarosz. 2011. Progressive Expectation–
Maximization for Hierarchical Volumetric Photon Mapping. Computer Graphics
Forum 30, 4 (2011).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph.
42, 4 (2023).

Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media • 0:7

Table S.2. Quantitative comparison of radiance field rendering on synthetic datasets (NeRF-Blender)

Method Bulldozer Ficus Hotdog Drums Ship Materials Mic Chair
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [Mildenhall et al. 2020] 32.54 0.961 30.13 0.964 36.18 0.974 25.01 0.925 28.65 0.856 29.62 0.949 32.91 0.980 33.00 0.967
Plenoxels [Fridovich-Keil et al. 2022] 34.10 0.975 31.83 0.976 36.43 0.980 25.35 0.933 29.62 0.890 29.14 0.949 33.26 0.985 33.98 0.977
iNGP-Base [Müller et al. 2022] 35.64 0.981 30.29 0.972 37.01 0.982 24.575 0.930 30.60 0.892 28.955 0.944 35.40 0.989 35.06 0.984
Mip-NeRF 360 (Big) [Barron et al. 2022] 36.10 0.980 33.19 0.979 37.71 0.982 25.60 0.931 31.26 0.893 29.90 0.949 36.52 0.991 35.65 0.983
3D Gaussian Splatting (30k) [Kerbl et al. 2023] 36.073 0.982 35.49 0.986 38.07 0.985 26.27 0.954 31.65 0.905 30.49 0.960 36.77 0.992 35.53 0.987
Ours - Gaussian Kernels 32.11 0.957 33.37 0.973 34.24 0.973 24.74 0.921 29.11 0.872 29.49 0.949 31.64 0.971 29.78 0.957
Ours - Epanechnikov Kernels 33.60 0.972 31.92 0.970 36.14 0.977 25.56 0.941 29.69 0.883 29.33 0.952 33.21 0.983 32.68 0.972

Table S.3. Quantitative comparison of radiance field rendering on real datasets (MipNeRF-360)

Method bicycle garden stump room counter kitchen bonsai
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [Mildenhall et al. 2020] 21.76 0.455 23.11 0.546 21.73 0.453 28.56 0.843 25.67 0.775 26.31 0.749 26.81 0.792
Plenoxels [Fridovich-Keil et al. 2022] 21.91 0.496 23.49 0.606 20.66 0.523 27.59 0.842 23.62 0.759 23.42 0.648 24.67 0.814
iNGP-Base [Müller et al. 2022] 22.19 0.491 24.60 0.649 23.63 0.574 29.27 0.855 26.44 0.798 28.55 0.818 30.34 0.890
Mip-NeRF 360 (Big) [Barron et al. 2022] 24.31 0.685 26.88 0.809 26.18 0.74 31.47 0.910 29.45 0.892 31.99 0.917 33.40 0.938
3D Gaussian Splatting (30k) [Kerbl et al. 2023] 25.25 0.771 27.41 0.868 26.55 0.775 30.63 0.914 28.70 0.905 30.32 0.922 31.98 0.938
Ours - Gaussian Kernels 22.07 0.536 26.14 0.807 23.83 0.614 29.86 0.895 28.23 0.879 29.44 0.890 31.68 0.929
Ours - Epanechnikov Kernels 21.56 0.515 25.23 0.747 23.81 0.623 30.21 0.901 27.96 0.866 28.76 0.864 30.95 0.917

Table S.4. Quantitative comparison of radiance field rendering on real datasets (Tanks&Temples and Deep Blending)

Method truck train Dr. Johnson Playroom
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [Mildenhall et al. 2020] 21.76 0.455 19.40 0.376 23.11 0.546 21.73 0.453
Plenoxels [Fridovich-Keil et al. 2022] 23.22 0.774 18.93 0.663 23.14 0.787 22.98 0.802
iNGP-Base [Müller et al. 2022] 23.26 0.779 20.17 0.666 27.75 0.839 19.48 0.754
Mip-NeRF 360 (Big) [Barron et al. 2022] 24.91 0.857 19.52 0.660 29.14 0.901 29.66 0.900
3D Gaussian Splatting (30k) [Kerbl et al. 2023] 25.19 0.879 21.10 0.802 28.77 0.899 30.04 0.906
Ours - Gaussian Kernels 23.93 0.850 20.24 0.743 27.37 0.863 28.75 0.892
Ours - Epanechnikov Kernels 23.98 0.845 20.43 0.750 27.52 0.864 28.89 0.895

Aaron Knoll, Gregory P. Johnson, and Johannes Meng. 2021. Path Tracing RBF Particle
Volumes. In Ray Tracing Gems II, Adam Marrs, Peter Shirley, and Ingo Wald (Eds.).
Apress.

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition
tracking for rendering heterogeneous volumes. ACM Trans. Graph. 36, 4 (2017),
1–16.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In Proceedings of ECCV.

Bailey Miller, Iliyan Georgiev, andWojciech Jarosz. 2019. A null-scattering path integral
formulation of light transport. ACM Trans. Graph. 38, 4 (2019).

Zackary Misso, Yining Karl Li, Brent Burley, Daniel Teece, and Wojciech Jarosz. 2023.
Progressive null-tracking for volumetric rendering. In ACM SIGGRAPH Conference
Papers.

T.K. Moon. 1996. The expectation-maximization algorithm. IEEE Signal Processing
Magazine 13, 6 (1996).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4 (2022).

Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo
methods for volumetric light transport simulation. Computer Graphics Forum 37, 2
(2018).

T M Sutton, F B Brown, F G Bischoff, D B MacMillan, C L Ellis, J T Ward, C T Ballinger,
D J Kelly, and L Schindler. 1999. The Physical Models and Statistical Procedures
Used in the RACER Monte Carlo Code. (1999). https://doi.org/10.2172/767449

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (2004).

E Woodcock. 1965. Techniques used in the GEM code for Monte Carlo neutronics
calculations in reactors and other systems of complex geometry. In Proceedings of
the Conference on Applications of Computing Methods to Reactor Problems, Vol. 557.

https://doi.org/10.2172/767449

0:8 • Condor et al.

Fig. S.3. Qualitative results from randomly picked views of the test set using our optimization and rendering pipeline, in synthetic datasets (Blender Synthetic
Dataset [Mildenhall et al. 2020]). From top to bottom: Bulldozer,Mic, Ship, Hotdog,Materials, Chair, Ficus, Drums. These were rendered at 16spp, analytic
bounding ellipsoids and unlimited depth.

Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media • 0:9

Fig. S.4. Qualitative results from the first 4 views of the test set using our optimization and rendering pipeline, in real datasets. From top to bottom: train, truck
(Tanks&Temples dataset), playroom (Deep Blending dataset), garden, kitchen, bonsai, counter and room (Mip-NeRF360 datasets). Rendered at 8spp, analytic
bounding ellipsoids and unlimited depth.

0:10 • Condor et al.

Fig. S.5. Expanded insets from Figure 11. From left to right: reference image, Plenoxels [Fridovich-Keil et al. 2022], Instant NGPs [Müller et al. 2022], (first row);
Mip-NeRF360 [Barron et al. 2022], 3DGS [Kerbl et al. 2023] and ours (second row). Datasets, from top to botttom: garden(Mip-NeRF360 dataset), playroom
(Deep Blending dataset), counter (Mip-NeRF360 dataset) and train (Tanks&Temples dataset).

Supplemental Material
Don’t Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media • 0:11

Table S.5. Performance analysis of our method on different quality settings. Quality presets use low-poly icosphere shells, 1 sample per pixel and 64 maximum
depth. Performance presets limit maximum depth for a maximum quality drop of ∼2-3 PSNR. In practice, this means limiting recursion to a maximum between
16 to 32 bounces depending on the dataset and type of kernel. All datasets feature a maximum of 300k primitives. Analogously to timings reported by Kerbl et
al. [2023], we measure rendering times on an RTX A6000. Reported timings are the result of averaging over the entirety of their respective datasets.

Dataset Gaussian Kernels Epanechnikov Kernels
Quality Performance Quality Performance

Real Datasets (resolution) Execution time (ms)
truck (979x576) 14.574 13.176 8.951 5.823
train (979x576) 22.672 16.348 14.131 11.923
Dr. Johnson (1332x876) 20.552 13.970 13.491 10.550
playroom (1264x832) 21.050 13.576 15.231 14.803
bicycle (1237x822) 11.478 8.889 4.940 4.588
garden (1297x840) 13.582 13.174 5.534 5.080
stump (1245x825) 10.225 8.409 4.779 4.555
room (1558x1038) 57.245 27.698 42.623 23.869
counter (1558x1038) 107.953 84.378 76.031 64.722
kitchen (1558x1038) 64.100 33.444 45.030 40.873
bonsai (1558x1038) 45.259 22.462 31.845 19.695
Synthetic Datasets (resolution) Execution time (ms)
Bulldozer (800x800) 21.465 15.878 7.544 5.953
Ficus (800x800) 142.950 24.305 237.401 46.480
Hotdog (800x800) 43.052 18.623 33.295 13.242
Drums (800x800) 113.925 61.438 11.174 5.576
Ship (800x800) 118.386 51.575 83.639 14.181
Materials (800x800) 203.372 92.228 33.939 15.002
Mic (800x800) 349.115 53.287 335.457 69.639
Chair (800x800) 21.617 12.810 11.082 6.430

	S.1 Volumetric Primitives
	S.1.1 The RTE with volumetric primitives
	S.1.2 Integrating through segments
	S.1.3 Sampling transmittance
	S.1.4 Emissive media

	S.2 Adjoint Derivations
	S.2.1 Adjoint VPRF
	S.2.2 Adjoint VPPT

	S.3 Mixture Model Regression
	S.4 Optimization and Rendering of Radiance Fields - Implementation Details
	S.4.1 Initialization
	S.4.2 Optimization Process
	S.4.3 Loss Function
	S.4.4 Rendering parameters

	S.5 Optimization and Rendering of Radiance Fields - Quantitative comparison to previous work
	References

