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Abstract 

We propose a method to estimate normal maps of 

objects in the wild, from just a single RGB image. 

Our approach is based on deep learning, and we use 

synthetic data to train our network. Lastly, we show 

its applicability by improving the results of image-

based appearance editing tasks. 

Introduction 

Normal maps have enjoyed an uptick of interest as of 

late, as they represent an easy way of conveying 

geometrical information of objects. This is 

particularly important for image-based applications, 

such as relighting, appearance editing and novel 

view-point generation. It provides information about 

an object’s 3D geometry without access to the 3D 

model itself, simplifying the networks’ training 

processes and architectures. While many methods 

exist to compute normal maps from RGB images, 

they either require several viewpoints or control over 

the light sources. Instead, our method predicts normal 

maps in the wild, for objects within a completely 

uncontrolled environment, under any lighting 

condition, and requiring just a single image. 

Our Method 

Our approach relies on a Convolutional Neural 

Network (CNN) taking as input single views of RGB 

images. Our architecture is based on the Pix2Pix 

network [1] which has been shown to perform 

reasonably well in different normal prediction tasks. 

Our goal is to maintain as much geometrical detail as 

possible, while making the normal predictions 

invariant to changes in material and illumination 

conditions in the input images.  

Architecture 

The network follows an encoder-decoder 

architecture, with 4 downsampling blocks in the 

encoder and 4 upsampling blocks in the decoder. In 

each block we repeat twice the following structure: 

Convolution with kernel 4x4, a batch-normalization 

layer, and a leakyReLU activation layer. We add an 

extra convolutional block after the last decoder as 

well. This is done in order to reduce the impact of 

specular reflections in the final predictions, putting 

more space between the last skip connection, which 

carries the high-frequency information, and the final 

output of the network. We also included residual 

connections within each block, as proposed by 

ResNet [2]. Residual connections stabilize the 

network and reduce the amount of high-variance 

noise present in the predictions. In contrast to 

Pix2Pix, which uses transposed convolutions, we use 

bilinear upsampling in order to reduce the risk of 

checkerboard artifacts. The output uses a hyperbolic 

tangent function (tanh), bounding the results of the 

predictions to [-1,1], which are then scaled to 

represent unit length vectors, and normalized to the 

range [0,1]. The network's weights are initialized 

with a zero-mean normal distribution and a standard 

deviation of 0.02.  

Training 

Our loss function is described in the following 

equation: 

𝐿𝑜𝑠𝑠 = ʎadvLadv + ʎvggLvgg + ʎrecLrec 

To infer normal maps similar to the target 

distribution we rely on an adversarial loss Ladv with a 

binary cross entropy (BCE) function. We use the 

same discriminator model as the one proposed in 

Pix2Pix. In order to keep high-frequency geometrical 

details in the inferred normals we include a 

perceptual loss [3] Lvgg using the VGG16 [4] model 

pretrained on ImageNet. Finally, to directly supervise 

the prediction of each normal we rely on a Mean 

Squared Error (MSE) function Lrec. Since normal 

vectors have unit-norm, the MSE is equivalent to a 

cosine distance, which has additional geometric 

properties. Our final loss is a weigthed sum of the 3 

losses. We empirically found the weights ʎadv= 0.25, 

ʎrec = 10, and ʎvgg= 1 to work well in our problem.  

The model was trained on synthetic data [5] with 

paired ground-truth normal maps. The synthetic 
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dataset was composed of 12 different geometries, 

with 5 different viewpoints, 6 different illumination 

conditions, and 100 different materials each; 

accounting for a total of 42000 images of size 

128x128 px. We implemented several data 

augmentation techniques, including random 90º 

rotations, flips, and random gamma, hue, saturation, 

and brightness changes. Adam optimizer is used with 

an initial learning rate of 0.0007, β1 = 0.9 and β2 = 

0.999. Our network is implemented using Pytorch 

and Pytorch Lightning as our frameworks. 

Results 
In Figure 1 you can observe some of the results 

obtained with our method using real, uncontrolled 

photographs. The predicted normals are accurate, 

contain high-frequency details, and avoid integrating 

specular reflections. We also showcase the 

applicability of our method in an image-based 

appearance editing framework, which uses 

perceptual features to alter the material appearance of 

objects. Our normal estimation module dramatically 

improved their results, obtaining better specular 

reflections and helping to maintain high-frequency 

detail. We show some of their results in Figure 2.  

Conclusions 
In this work we have presented a method to obtain 

high quality normal maps of real objects in the wild, 

from a single RGB image, by relying on a 

combination of deep learning and synthetic images. 

In addition, we have also shown an application where 

our method has already been successfully 

implemented, notably improving the quality of their 

results on real images. Nevertheless, our method is 

not free of limitations. Future work could filter 

reflections from actual object geometry to improve 

the model performance on very glossy or reflective 

materials and expand its use case to objects of 

multiple colors. 
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Figure 1: A sample of the real pictures we evaluated 

our network on, and their predicted normal maps.

  
Figure 2: A sample of real pictures edited with 

the image-based, perceptual appearance editing 

framework, which uses our normal estimation 

module. 


